

Unsupervised Learning of Monocular Depth and Ego-Motion using Conditional *Patch*GANs

Madhu Vankadari, Swagat Kumar, Anima Majumder & Kaushik Das

TCS Research, Bangalore, India.

Copyright © 2018 Tata Consultancy Services Limited

Why do we need Depth and Ego-Motion?

- Robot Navigation (Autonomous driving, Drones, etc.)
- 3D Reconstruction
- Manipulator Grasping
- Computer Graphics

Outline

- Supervised Learning approaches
- Unsupervised Learning approaches
- Proposed method
- Quantitative and Qualitative comparison
- Conclusions and Future Scope

Supervised Methods for Depth Estimation

Encoder

 CNN Encoder-Decoder regression by Egien et al., 2014

Experience energy

CONSULTANCY SERVICES

- CRFs with CNN as postprocessing by Li et al. 2015.
- Robust loss functions using scene priors by Laina et al., 2017
- Regression losses to classification losses with depth discretization by Cao et al., 2018

Ego-Motion Estimation using Deep Learning

 (I_t, I_{t+1})

- Learning Visual odometry using a CNN by konda. K et al., 2015
- Flow-Net variant as CNN encoder followed by two LSTM layers for 6 DOF pose by Wang et al., 2017

Encoder

FC / LSTM Layers

Supervised Losses

SOTA for Unsupervised Depth and Ego Motion

• Stereo-Monocular Methods

Geometry to the rescue by Garg et al., 2016
Monodepth by Godard et al., 2017
UnDEMON by Babu et al., 2018
Depth – Feat VO by Zhan et al., 2018
MonoGAN by Aleotti el al., 2018

• Monocular only

SfMLearner by Zhou et al., 2017

Vid2Depth by Mahjourian et al., 2018

Unsupervised Disparity / Depth Learning

- Predict disparity and reconstruct the opposite stereo image from the input by Garg et al., 2016
- Left-right and right-left disparity prediction and enforcing consistency between them by Godard et al., 2017

Reconstruction Losses

Depth and Ego-Motion together

Proposed Method

- Total approach as GAN paradigm
- Depth and Pose Networks are Generators conditioned on input RGB Image(s)
- Image reconstruction using predicted disparity and pose
- Patch-Based Image discriminator (Patch GAN)
- Total loss is a weighted combination of reconstruction and adversarial losses

Network Architecture

a.) Disp-Net, inspired from SfMLearner by Zhou et al., but with a lesser number of conv-layers.

- b.) Pose-Net (Conv Encoder followed by fully connected layers)
- c.) Patch based Image discriminator

Total No of trainable parameters 19M. The Disp-Net has only 8M, and Pose-Net has 6M

Spatial / Temporal Image Warping

Spatial Image Warping :

The transformation **T** is the **disparity**,

The source image is left for right and vice versa

Temporal Image Warping

The transformation **T** is the **ego-motion** estimated

The source images will temporally aligned images

The transformation happens in Camera-coordinate system

Patch GAN

- Completely **convolutional** so computationally simple
- Facilitates to evaluate the image locally as **patches**
- Patch sizes can be varied
- Ablation studies are performed to fix the **size** of the patch

Loss Functions

Image reconstruction losses both spatial and temporal domains

Pixel-wise mean squared error (MSE)

Structural Similarity Index (SSIM)

- Edge aware disparity smoothness for both left-right and right-left disparities
- Left-Right consistency Loss
- Adversarial losses

Dataset and Training

- KITTI Outdoor Driving Dataset
- Total different 61 sequences with 42382 images of 1242x375 resolution
- Eigen et al split: **32** scenes with **22600** images for training, **697** from **29** scenes for testing. (evaluation is done with **LIDAR** data)
- KITTI Stereo split: 33 scenes with 29000 for training, 200 from 28 scenes for testing (evaluation is done with GT depth data given with the dataset)
- Trained for 0.24M iterations on GTX 1080 for 23 hours and the total script is written in Tensorflow

Depth Results

Input RGB	Depth-VO-Feat [Zhan et al., 2018]	Vid2Depth [Mahjourian et al., 2018]	UnDepth	Ours
	States.	- Townsky	The Part	And the second
	N-MARKAN			P B B
	ALC: NO		in a state of	CONFE C
		Sec. 1	. 1	- All

Depth Results

Method	Abs.Rel	Sq.Rel	RMSE	Log RMSE	Δ<1.25	Δ < 1.25^2	Δ < 1.25^3
MonoGAN	0.119	1.239	5.998	0.212	0.846	0.940	0.976
Proposed	0.110	1.044	5.535	0.200	0.849	0.944	0.979

Method	Abs.Rel	Sq.Rel	RMSE	LogRMSE	Δ<1.25	Δ < 1.25^2	Δ < 1.25^3
UnDEMoN	0.139	1.174	5.59	0.239	0.812	0.930	0.968
Proposed	0.1269	0.9982	5.309	0.226	0.827	0.934	0.971

Pose Results

• Absolute trajectory error (ATE) as Zhou et al., 2017

Seq	UnDEMoN (t)	Proposed (t)
00	0.0644	0.0593
04	0.0974	0.0713
05	0.0696	0.0651
07	0.0742	0.0666

Conclusion

- Proposed method predict depth without actually using GT-Depth
- Also, predicts ego-motion
- Reconstruction losses and adversarial losses are used for training
- Able to get 5.2% improvement over state-of-the art
- Small Depth-Net which is able to produce around 30 fps on a GTX 1080 machine

Future Work

- Night Vision Depth and Ego-Motion Estimation
- Initial Results

Thank You